Flight Computer Infrastructure Capabilities for Deep-Space Landed Missions

Constraints: Extreme Environments

Diminishing solar energy available (and diurnal cycles)

Severe transient and total dose radiation effects

One-shot critical events/ phases

Deep diurnal temperature variance

Constraints: Mass and Volume

Europa concept mass: Est 10% of launch weight

Launch vehicle: SLS

launch weight

Launch Vehicle: ATLAS 5

Constraints: Long Project Lifecycles

Europa Concept (Est 2024)

- 2014 study start
- Proposed 8 year Cruise

Predecisional information for planning and discussion only

Mars 2020 (2020) - 2004 start (Curiosity)

Unique Lander Missions = Custom Payloads

Cameras (Mars 2020 has 23!) -- context, composition
Spectrometer/Chromatograph -- composition
Radar/LIDAR -- topology, including subsurface
Laser/X-ray -- elemental/molecular composition
Magnetometers/Particle Detectors -- fields, flux
Seismometers -- seismic motion
Mechatronics -- deployments/surface sampling

Computing Priorities for Landers

JPL Processor Architectures

"Flagship" Missions

- Backplane-based spacequalified computer
 - E.g. GVSC-1750, RAD 6000, RAD 750
 - Often developed with government support
 - Substantial need for custom interface cards
- Bulk Storage Memory
 - Low availability of space flash/sdram
 - Low access speeds

Smaller Missions

- Custom compute board built around space-qualified processor
 - E.g. SPARC, Leon,FPGA/embedded cores
 - May be used in highly constrained/customized applications
- Memory
 - Reprogrammability helps mitigate long lifecycles
 - New robust technologies
 (CRAM/MRAM) still low density

JPL Interface Topologies

- 1553 still widely used
 - Robust and proven
 - Slow and inflexible
- Payload interfaces generally point-to-point
 - Resource-intensive
 - Lack of available standardized bus interface parts/drivers
- Cabling mass/volume significant contributions
- Deployments and cruise-tolanded configuration changes require safely cutting interfaces

JPL Current Research Efforts

- Software architectures for multicore and fail-operational computing
- Advanced commercial parts screening and packaging techniques
- Robust multipoint bus architectures
- Adaptive data compression and management strategies

Curiosity flight computers

